Safety and Feasibility of Retrograde Recanalization of Radial Artery Occlusion in Patients with Need for Repeated Wrist Procedures

Igor M. Spiroski*, Biljana Zafirovska, Sasko Kedev, Zhan Zimbakov, Hristo Pejkov, Darko Kitanovski, Ivan Vasilev, Aleksandar Jovkovski, Hajber Taravari, Marijan Boshev

University Clinic of Cardiology, Skopje, Republic of North Macedonia

Abstract

Aim: The purpose of the study was to present a new technique of retrograde recanalization of radial artery (RA) occlusion (RAO) in patients with need for repeated wrist access percutaneous angiographic procedures.

Materials and Methods: During a 10-year period from March 2011—May 2021, 53 000 patients were referred for percutaneous coronary intervention (PCI) in a high-volume transradial center. RAO on angiography was documented in 1165 patients. Retrograde recanalization of RAO was attempted in 70 patients. The selected patients were with multiple previous bilateral wrist interventions (n = 3–8). Ipsilateral ulnar artery was usually rudimented or occluded and contralateral wrist approach could not be used. We examined clinical and procedure characteristics, access site bleeding and ischemic complications and procedural success of retrograde recanalization of RAO. Visual analog scale (VAS) score forearm pain assessment was performed after procedure. Technique: All patients had palpable pulse distal of previous puncture site due to collaterals from ipsilateral ulnar and interosseous artery. The RA was punctured with an inner metallic needle with a plastic cannula. Using retrograde radial angiography performed by injecting contrast through the plastic cannula, the occluded segment was visualized and crossed with different types of hydrophilic chronic total occlusion guide wires. After sheath insertion, balloon dilatation of the occluded RA segment, successful catheterization, and/or percutaneous coronary intervention was performed. Final RA angiography was performed on all patients.

Results: Successful retrograde opening of RAO was achieved in 65 out of 70 patients (92%). PCI was performed in 56% of patients through the opened RA and 5 patients underwent CAS. Procedural success through opened RA was achieved in all 65 patients. Forearm pain during procedure was present in all cases (VAS score 3 ± 2.1). Access site bleeding EASY score 3 and 4 occurred in 6 patients (8.5%). One patient had discharge of embolic material up to the arm without clinical consequences. In one patient, we observed dissection of the interosseous artery. Clinical and duplex long-term follow-up with a median of 4.1 years showed patent RA in only 20 patients. There were no registered cases of hand ischemia. About 61% of patients underwent subsequent PCIs, through other alternative access sites.

Conclusion: Retrograde recanalization of RAO is successful and safe in patients with need of repeated coronary angiography procedures and inability to use other wrist access sites. Puncturing the collateral and performing retrograde radial angiography through the cannula is a key factor in successful opening of the RAO.

Introduction

Transradial arterial access (TRA) is the default access site for percutaneous cardiovascular interventions [1], [2], [3], [4]. Many published studies over the past 10 years proved decreased access site bleeding and vascular complications, reduced post-procedural costs and facilitation of same day discharge in using radial over femoral approach [5], [6], [7], [8], [9].

TRA is of particular benefit especially in STEMI and acute coronary syndrome patients, where it has proven to be superior to transfemoral arterial access (TFA) in decreasing rates of access site bleeding, mortality, and other major cardiovascular events [7], [8], [9], [10].

TRA is a technically more complex procedure than TFA with an associated learning curve [5], [6]. Radial approach can be challenging in cases with radial artery (RA) anomalies and/or high degree of spasm, not uncommon in the elderly and female patients [11], [12], [13]. Different strategies were implemented over the years by dedicated interventionalists to overcome these issues [14], [15], [16]. Still the greatest challenge in the field of radial access presents patients with multiple previous TRA, where RA occlusion (RAO) or sub-occlusion is present. Gaining a successful wrist access site in these patients can present a real issue for radial interventionalists. This problem is especially present in high-volume experienced transradial centers where most of the angiography procedures are performed using TRA access.

In this study, we aimed to examine the success and potential benefit of opening chronic RA occlusions for the purpose of re-using the RA for percutaneous procedures and providing a safe RA approach. This procedure is of great value especially in patients with
 Spiroski et al. Safety and Feasibility of Retrograde Recanalization of Radial Artery Occlusion

SEE J Cardiol. 2022 Nov 25; 3(1):4-10.

multiple repeated percutaneous coronary interventions (PCIs) through the RA, where preserving radial access and not crossing over to femoral is highly recommended with a great benefit to the patient [5], [6], [7], [8], [9].

Materials and Methods

Patient population

During a 10-year period from March 2011–May 2021, 53 000 patients were referred for PCI in a high-volume transradial center. RAO on angiography was documented in 1165 patients. Retrograde recanalization of RAO was attempted in 70 patients. All procedures were performed by experienced transradial operators (>300 diagnostic TRA procedures and >200 PCI procedures per year).

The selected patients had multiple previous bilateral wrist interventions (n = 2–9) and ipsilateral ulnar artery was usually rudimented or occluded and contralateral wrist approach could not be used. We examined clinical and procedure characteristics, access site bleeding and ischemic complications. Procedural success of retrograde recanalization of RAO and finishing the procedure through the opened RA was also documented. Patients were followed up clinically and with duplex ultrasound with a median of 49.8 ± 21 months. Forearm pain assessment was performed after the procedure. Patients with documented anatomic variations of RA from the previous transradial procedure, such as tortuosity of the vessel and high take off, were excluded from the study.

Technique

All patients had palpable pulse distal of previous puncture site due to collaterals from ipsilateral ulnar and interosseous artery. RA was punctured with an inner metallic needle and a plastic cannula (cannula-over-needle, from Radifocus™ Introducer II, Transradial Kit, Terumo, Japan). Using retrograde radial angiography performed by injecting contrast through the plastic cannula, the occluded segment of the RA was visualized and accessed. According to the type of occlusion/sub-occlusion, different techniques were used to open the vessel (Figures 1, 2 and 3).

Type 1 technique in retrograde recanalization of RAO

This was the most commonly technique used in 88% of patients, where the occluded segment was in place of the previous conventional RA puncture. RA is punctured distally from previous puncture, but still in the conventional RA puncture site. First the operator used the reverse tip of the lead spring mini guidewire (from Radifocus™ Introducer II, Transradial Kit, Terumo, Japan) going through the needle cannula to open the retrograde cap of the chronic total occlusion. Then the occluded segment was crossed with different types of hydrophilic chronic total occlusion (CTO) guide wires, with Pilot 200 guide wire (hi-torque pilot 200 guide wire: 0.014” × 190 cm, Abbott, Chicago, Illinois, United States) being

![Figure 1: Type 1 technique in retrograde recanalization of radial artery occlusion (RAO). (a) Retrograde RA angiography thorough cannula. (b) Chronic total occlusion guide wire crossing of RAO. (c-g) Consequent balloon dilatations of the occluded vessel. (h-i) Introducer insertion and new RA angiography. (j-k) Catheter advancement. (l) Final angiography post percutaneous coronary intervention](image)
most commonly used. This technique is used due to the short segment available for manipulation and the need for extra pushability. After successful wire crossing into the brachial artery, a short 5 or 6F sheath was partially advanced into the RA. Consequent balloon dilatations followed, with a full sheath insertion, after which a successful catheterization and/or PCI was performed.

Type 2 technique in retrograde recanalization of sub-occluded RA

When sub-occlusion was present, the same procedure is followed as in Type 1. Only hydrophilic CTO guidewires were used for lesion crossing and subsequent balloon dilatations with long coronary balloons on low atmospheres over 40 s dilatations.

Type 3 technique in retrograde recanalization of RAO through distal RA access puncture

In this technique, distal RA puncture was performed in the anatomical snuffbox. When distal TRA was achieved, sufficient space for introducing hydrophilic guide wires was available to open the occluded RA segment. The rest of the procedure after puncture is the same as Type 1.

RA puncture procedure

RA puncture and cannulation were performed using a counter-puncture technique with a 20 G plastic intravenous cannula and 0.025-inch mini guidewire of 45 cm followed by placement of a 5 French or 6 French hydrophilic introducer sheath (Terumo, Japan).

Spasmolytic cocktail (verapamil 5 mg) was given intra-arterially through the radial sheath which was applied only once during primary TRA.

After re-opening of the occluded RA, retrograde wrist arteriography [17] was performed again in all patients. A solution of 3 mL of contrast diluted with 7 mL of blood was injected through the side arm of the sheath under fluoroscopy in the posterior-anterior projection.

Before primary sheath insertion, an initial bolus of 5000 IU of unfractionated heparin was administered intravenously.

Post procedure management

The sheath in the RA was removed immediately after the procedure regardless of the level of anticoagulation, and a compressive dressing or a TR band was applied to the wrist to seal the new puncture site. Compression was applied for an approximately 3-h period with gradual deflation of the TR band after the 1st h. In distal TRA puncture, shorter hemostasis protocol was used up to 1 h with compressive dressing positioned at the anatomical snuffbox. Patent hemostasis was applied to all patients [18].
Definitions

Access success was defined as opening of the occluded RA and gaining a successful TRA through the previously occluded RA.

Procedural success was defined as completion of the procedure through the opened RA access site without transfer to another arterial access site.

Procedure time was defined as time from the first puncture of RA until completion of the procedure.

Vascular access site complications were defined as the occurrence of a pseudoaneurysm, fistula, hematoma (EASY score 2–5), loss of radial or ulnar pulse or radial/ulnar nerve injury after procedure and during follow-up.

Hematoma was classified into five grades according to EASY score (Grade I: Local hematoma, superficial <5 cm; Grade II: Hematoma with moderate muscular infiltration; Grade III: Forearm hematoma and muscular infiltration, below the elbow; Grade IV: hematoma and muscular infiltration extending above the elbow; and Grade V: Ischemic threat - compartment syndrome) [19].

Hand ischemia was defined as an inadequate blood supply to the hand resulting in pain, discoloration, frank ulcerations, tissue necrosis, and/or gangrene of fingers, generally starting at the tips.

Major vascular complications were defined as hemoglobin drop >3 g/dL and requiring intervention or surgery and/or blood transfusion for bleeding attributable to a vascular access site.

Pain in the arm at follow-up was accessed with the visual analog scale (VAS) scoring system [20].

Statistical analysis

Categorical variables are expressed as numbers and percentages and continuous variables as the mean ± SD, or median (interquartile range). Statistical analysis was performed with JMP 23 for Windows (SAS Inc.).

Results

During a 10-year period from March 2011–May 2021, 53 000 patients were referred for PCI in a high-volume transradial center. RAO on angiography was documented in 1165 patients. Retrograde recanalization of RAO was attempted in 70 patients. Mean age of patients was 61.3 ± 11 years with 32% females. Among atherosclerosis risk factors, hypertension, diabetes, and smoking were most common in 51 (73%), 30 (42%), and 46 (65%) patients, respectively. This was a high-risk group of patients with prior MI in 70%. Multivessel disease was present in 34 patients (48%) with the previous CABG in 7% of patients. All patients had prior TRA access with the previous RA procedures ranging from 2 to 9 (Table 1).

Table 1: Baseline characteristics

<table>
<thead>
<tr>
<th>Clinical variables</th>
<th>RAO patients (N = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61.3 ± 11</td>
</tr>
<tr>
<td>Female</td>
<td>25 (35%)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.7 (19-33)</td>
</tr>
<tr>
<td>CAD risk factor</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>51 (72.8%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>30 (42%)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>25 (35%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>46 (65%)</td>
</tr>
<tr>
<td>Prior TRA</td>
<td>70 (100%)</td>
</tr>
<tr>
<td>Prior MI</td>
<td>49 (70%)</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>5 (7.1%)</td>
</tr>
</tbody>
</table>

RAO: Radial artery occlusion; BMI: Body mass index; TRA: Transradial approach.

Successful retrograde opening of RAO was achieved in 65 out of 70 patients (92%). PCI was performed in 56% of patients through the opened RAO and 5 patients underwent CAS. Procedural success through opened RA was achieved in all 65 patients.
Forearm pain during procedure was present in all cases assessed as 3 ± 1.1 on the VAS scale. There was inability to cross the occluded segment with wire in 5 patients (8%).

Procedure duration was 39.7 ± 18 min, contrast volume 140 ± 32 mL, and fluoroscopy time was 10.1 ± 12 min. 5 French sheath was used in 17% of patients and 6 French sheath (Terumo) in 83% of patients (Table 2).

Table 2: Procedural characteristics

<table>
<thead>
<tr>
<th>Clinical variables</th>
<th>RAO patients (N = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique 1</td>
<td>62 (88%)</td>
</tr>
<tr>
<td>Technique 2</td>
<td>5 (7.1%)</td>
</tr>
<tr>
<td>Technique 3</td>
<td>3 (4.2%)</td>
</tr>
<tr>
<td>Procedure success</td>
<td>65 (92%)</td>
</tr>
<tr>
<td>PCI</td>
<td>37/65 (56%)</td>
</tr>
<tr>
<td>CAS</td>
<td>5/65 (7.6%)</td>
</tr>
<tr>
<td>Fluoroscopy time min</td>
<td>10.1 ± 12</td>
</tr>
<tr>
<td>Contrast volume</td>
<td>140 ± 32 mL</td>
</tr>
<tr>
<td>Procedure time min</td>
<td>39.7 ± 18</td>
</tr>
<tr>
<td>Sheath size</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>12 (17%)</td>
</tr>
<tr>
<td>UF</td>
<td>58 (83%)</td>
</tr>
</tbody>
</table>

RAO: Radial artery occlusion. PCI: Percutaneous coronary intervention.

Access site bleeding easy score 3 and 4 occurred in 6 patients (8%). One patient had discharge of embolic material up the arm without clinical consequences. In 1 patient, we observed dissection of the interosseal artery. Clinical and duplex long-term follow-up at median of 49.8 ± 21 months showed patent RA in only 20 patients (30%). There were no registered cases of hand ischemia at follow-up. About 61% of patients underwent subsequent PCIs, through other access sites (Table 3).

Table 3: Access site complications

<table>
<thead>
<tr>
<th>Clinical variables</th>
<th>RAO patients (N = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access site bleeding complications</td>
<td></td>
</tr>
<tr>
<td>Hemathoma Grade 1</td>
<td>16 (22%)</td>
</tr>
<tr>
<td>Hemathoma Grade 2</td>
<td>15 (21.4%)</td>
</tr>
<tr>
<td>Hemathoma Grade 3</td>
<td>4 (5.7%)</td>
</tr>
<tr>
<td>Hemathoma Grade 4</td>
<td>2 (2.8%)</td>
</tr>
<tr>
<td>Hemathoma Grade 5</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Dissection of RA</td>
<td>2 (2.8%)</td>
</tr>
<tr>
<td>Major access site vascular complication</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Sign of hand ischemia</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

RAO: Radial artery occlusion. RA: Radial artery.

Discussion

In this study, we found that retrograde opening of chronic RAO is safe and successful in patients with no other options for wrist access site percutaneous interventions.

At the present time, most of the world’s interventionalists have already adopted the TRA as a default approach. According to the latest ESC and SCAI recommendations [1], [2], [3], [4], transradial approach should be the default approach for PCI in experienced transradial centers and therefore more attention should be paid to strategies for achieving successful transradial access [14], [15], [16], [18], [21]. Even the new ACC guidelines from 2021 propose the use of radial approach as a default approach, with numbers of TRA interventions increasing rapidly in the United States over the last decade [2]. Despite its proven advantages, certain characteristics of radial approach as the common occurrence of RAO, particularly when reusing this access site, are worth additional research for alternatives, intervention or even better, decreasing the number of this not so rare complication of TRA. Published studies about crossing over to other wrist access sites as the ipsilateral ulnar have proven to be safe and successful in preserving the benefits of radial access [22], [23]. Still, radial operators must try to conserve the patency of the RA and implement all available data on this topic to protect the RA from occlusion as an integral part of their practice.

Different risk factors for RAO have been reported in published data, including prolonged high-pressure compression especially in the early years of radial access, repeated puncture of the radial access site, and the presence of a small caliber RA. Also, many other factors may have an impact on the patency of the punctured RA, such as pre-procedural pharmacotherapy, use of spasmolytic cocktail (verapamil and intra-arterial nitroglycerin) and administration of i.v. UF Heparin before procedure. The post-procedural care has showed to be of the greatest significance in preserving a patent RA, as the patent hemostasis technique and the ulnar compression technique [18].

The implementation of patent hemostasis to decrease the rate of RAO using pulse oximetry by confirming hemoglobin oxygen saturation on the punctured RA (>90%) after hemostasis, was one of the crucial techniques in the field published by Panchoy et al. that changed the narrative of RAO [18]. This was the pivotal technique that saved countless radial arteries and allowed a safe re-use of not only the radial, but also ulnar arteries during wrist percutaneous interventions.

Still high-volume radial centers sometimes have a significant problem in achieving successful radial access in the high-risk group of patients with multiple wrist procedures which sometimes have more than ten PCI interventions performed through the RA. In most of these cases RAO is inevitable even when using patent hemostasis.

Several techniques have been published in the past dealing with the opening of a chronic total occlusion of the RA and re-using it for the following intervention [24], [25], [26], [27]. Mcquillan et al. [24] successfully adopted a retrograde coronary CTO strategy (a wire-based reentry into the upstream true lumen) to recanlize the RA. Mori and colleagues [25], in a case series of 22 patients, reported the feasibility and safety of a novel technique: transcoccluded radial access via ultrasound guidance, for diagnostic catheterization or PCI. The success rate was 91% with 2 failed cases. Another interesting approach to the recanalization of RAO for
repeat arterial access was introduced by Valsecchi et al. [26]. They have successfully used an ipsilateral ulnar approach to recanalize RAO. Although these approaches are technically feasible, the durability of RAO recanalization and patency of the ulnar artery should be proven in large case series and at longer follow-up before any recommendations for wider clinical use can be made.

A new study published recently explored retrograde recanalization of RAO through distal TRA, which proved to be feasible with a 90% patency rate at 1 month follow-up [27]. In our study, we had a smaller rate of patency at long term follow up to 10 years, which shows that patency rate decreases over time.

Furthermore, it is important to note that transulnar access, like radial access, has the same benefits as a wrist puncture site. It reduces procedural time in primary PCI, saves the contralateral RA for future possible coronary artery bypass grafting and avoids the use of femoral access in all patients scheduled for PCI [22], [23]. We consider this access as the best alternative for right radial access even in the presence of RAO, with long-time experience of over 12 years in our center.

We believe that this technique of retrograde recanalization, although not intended for long-term recanalization and patency of the RA, appears safe and feasible for gaining radial access in patients with preexisting RAO, undergoing percutaneous angiographic procedures, when alternative vascular access is limited.

Conclusion

Retrograde recanalization of RAO is successful and safe in patients with need of repeated coronary angiography procedures and inability to use other wrist access sites. We can use this technique when other access options are limited. Puncturing the collateral and performing retrograde radial angiography through the cannula is a key factor in successful opening of the RAO.

References

PMid:31880380

PMid:34895950

PMid:28886621

PMid:23354100

PMid:20466199

PMid:21470671

PMid:22858390

PMid:25458646

PMid:28886621

PMid:29452842

PMid:17145988

